BM25 x Vila Sésamo: avaliando modelos Sentence-BERT para Recuperação de Informação no cenário legislativo brasileiro
Resumen
Modelos baseados em BERT vêm sendo largamente utilizados, tornando-se o estado da arte para muitas tarefas de Processamento de Linguagem Natural e também para Recuperação de Informação. A arquitetura Sentence-BERT permitiu que esses modelos fossem facilmente utilizados para a busca semântica de documentos, já que ela gera embeddings contextuais que podem ser comparados através de medidas de similaridade. Para melhor investigar a aplicação de modelos baseados em BERT para Recuperação de Informação, este trabalho avaliou 12 modelos Sentence-BERT, disponíveis publicamente, para a recuperação de documentos no cenário legislativo brasileiro. Duas variantes do algoritmo BM25 foram utilizadas como baseline: Okapi BM25 e BM25L. O BM25L alcançou melhores resultados, com significância estatística, mesmo no cenário em que os documentos não foram pré-processados, enquanto que apenas um dos modelos de linguagem, ajustado usando dados legislativos brasileiros, obteve um desempenho similar para uma das três bases de dados utilizadas
Derechos de autor 2025 Douglas Vitório, Ellen Souza, José Antônio dos Santos, André Carlos Ponce de Leon Ferreira de Carvalho, Adriano L. I. Oliveira, Nádia F. F. da Silva

Esta obra está bajo licencia internacional Creative Commons Reconocimiento 4.0.
Los autores que envíen sus trabajos a esta revista implícitamente estón de acuerdo con los siguientes términos:
- Los autores retienen los derechos de autor de sus trabajos, permitiendo a esta revista su primera publicación bajo licencia de Creative Commons Attribution License, que permite a otros acceder libremente, usar y compartir dicho trabajo, citando adecuadamente la autoría del trabajo y su presentación en esta revista.
- Los autores pueden prescindir de los términos de licencia de CC y acordar por su cuenta arreglos contractuales adicionales independientes para la distribución no exclusiva y posterior publicación de este trabajo (p.e., para incluirlo en un repositorio institucional o publicarlo en un libro), citando adecuadamente su publicación inicial en esta revista.
- Además, se anima a los autores a poner en línea su trabajo (p.e., en repositorios institucionales o en su propio sitio web) en cualquier momento antes o durante el proceso de envío, ya que eso puede conducir a intercambios productivos y a un número mayor y más temprano de citas del trabajo publicado (Ver The Effect of Open Access).